Critical Threshold for Global Regularity of the Euler--Monge--Ampère System with Radial Symmetry
نویسندگان
چکیده
We study the global well-posedness of Euler--Monge--Ampère (EMA) system. obtain a sharp, explicit critical threshold in space initial configurations which guarantees regularity EMA system with radially symmetric data. The result is obtained using two independent approaches---one spectral dynamics Liu and Tadmor [Comm. Math. Phys., 228 (2002), pp. 435--466] other based on geometric approach Brenier Loeper [Geom. Funct. Anal., 14 (2004), 1182--1218]. results are extended to 2D radial swirl.
منابع مشابه
Sobolev Regularity for Monge-Ampère Type Equations
In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W 2,1+κ loc for some κ > 0. This generalizes some recents results [10, 11, 24] concerning the regularity of strictly convex Alexandrov solutions of the Monge-Ampère...
متن کاملQuaternionic Monge-ampère Equations
The main result of this paper is the existence and uniqueness of solution of the Dirichlet problem for quaternionic Monge-Ampère equations in quaternionic strictly pseudoconvex bounded domains in H. We continue the study of the theory of plurisubharmonic functions of quaternionic variables started by the author at [2].
متن کاملContinuity Estimates for the Monge-Ampère Equation
In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.
متن کاملGlobal regularity for the fractional Euler alignment system
We study a pressureless Euler system with a non-linear density-dependent alignment term, originating in the Cucker-Smale swarming models. The alignment term is dissipative in the sense that it tends to equilibrate the velocities. Its density dependence is natural: the alignment rate increases in the areas of high density due to species discomfort. The diffusive term has the order of a fractiona...
متن کاملGlobal Well-posedness for Euler-boussinesq System with Critical Dissipation
In this paper we study a fractional diffusion Boussinesq model which couples the incompressible Euler equation for the velocity and a transport equation with fractional diffusion for the temperature. We prove global well-posedness results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Siam Journal on Mathematical Analysis
سال: 2022
ISSN: ['0036-1410', '1095-7154']
DOI: https://doi.org/10.1137/21m1437767